
Embedded real-time linux for instrument control and data logging

When I moved to the west coast to take a job at NASA's Ames Research

Center in Mountain View, CA, I was impressed with the variety of

equipment and software which scientists at the center use to conduct

their research. I was happy to find that I was just as likely to see

a machine running Linux as one running Windows in the offices and

laboratories of NASA Ames (although many people seem to use Macs

around here). I was especially happy to find that the particular

group with whom I was going to work, the Atmospheric Physics Branch at

Ames, relied almost entirely on Linux machines for their day-to-day

work. So it was no surprise that when it was time to construct a new

control system for one of their most important pieces of hardware, a

switch from an unpredictable DOS-based platform to an Embedded

Linux-based one was a decision easily made.

The system I am working on is called the Solar Spectral Flux

Radiometer (SSFR), a PC-J04 based system custom-built by Dr. Warren

Gore at Ames. Dr. Gore, Dr. Peter Pilewskie, Dr. Maura Rabbette, and

Larry Pezzolo use the SSFR in their research. The team working on the

controller project consists of Dr. Gore, John Pommier, and myself.

The SSFR is used by the Ames Atmospheric Radiation Group to measure

solar spectral irradiance at moderate resolution to determine the

radiative effect of clouds, aerosols, and gases on climate, and also

to infer the physical properties of aerosols and clouds. Two

identical SSFR's have been built and successfully deployed in three

field missions: i) the Department of Energy Atmospheric Radiation

Measurement (ARM) Enhanced Shortwave Experiment (ARESE) II in

February/March, 2000; 2) the Puerto Rico Dust Experiment (PRIDE) in

July, 2000; and 3) the South African Regional Science Initiative

(SAFARI) in August/September, 2000. Additionally, the SSFR was used to

acquire water vapor spectra using the Ames 25-meter base-path

multiple-reflection absorption cell in a laboratory experiment.

The SSFR is designed to be deployed in aircraft such as the General

Atomics Altus Uninhabited Aerial Vehicle and the ER-2 (NASA's version

of the U-2). The SSFR box is mounted somewhere in the aircraft,

connected by optical fiber to two light collectors mounted on the top

and bottom of the plane. The heart of the SSFR is a midtower PC-sized

box whose innards are dominated by spectrometer interface electronics

and hardware. In one corner sits the PC-104 stack which controls the

instrument's operation. The stack is based on a CoreModule P5e card

from Ampro, which provides a 266 MHz pentium processor and 16

megabytes of RAM (in our configuration). Other cards in the stack

provide the serial interfaces which we need, as well as standard

interfaces to a keyboard, mouse, ethernet, video, etc., which are used

in development. Considering the harsh temperature and vibratory

conditions under which the system must be completely reliable, having

moving parts in the system could not even be considered. With this in

mind, the system contains a 30 MB M-Systems Disk-on-chip and a PCMCIA

interface in which we can hot-swap flash memory cards to store data

on. The stack also contains a timer card, with an interface to an

IRIG-B timecode generator, and a battery backup and power monitoring

card, which is essential when dealing with unreliable power coming off

of the plane. In addition, the box contains an internal thermostat,

heater, and cooling fan (I admit it, there is one moving part), in



order to try and keep the temperture in the box at acceptable levels
for the spectrometer hardware to function. Eachof the light
collectors also contains thermal monitoring and control circuitry.

The SSFRbox can be either left headless, in which case it samples
autonomously, or it can be connected to a large blue box which
contains a small ATM-style screen and a keyboard, as well as a 60HzAC
to 20V DCcurrent for data validation and debugging of the SSFR"on
the runway".

During normal operation, the SSFRcontrols the electronic equivalent
of "opening and closing the shutter" in two each of Si and InGaAs
diode array based spectrometers, two taking readings from above the
plane, and two taking readings from below. It must do this at precise
intervals, and keep each of the instruments collecting light for a
precise amountof time (the "integration time") before it samples the
data from each. Data f_om each of the spectrometers comesin as a set
of 256 32-bit numbers, each representing the amountof collected
radiation at a particular wavelength. The SSFRalso reads in the
temperature inside the box and at each light collector at the time it
reads the spectrum. In addition, the SSFRis expected to accept data
asynchronously over an _S-232 port which contains navigational and
yaw/pitch/roll data from the airplane. This data needs to be
precisely matched in time to data coming in from the spectrometers in
order such that the exact patch of sky and exact viewing direction of
the spectrometers is knownduring data analysis. Becauseof this,
accurate timestamping of absolutely every bit of data coming in is
essential.

As if this wasn't enoughto think about, it wasalso desired that the
system should both be able to run autonomouslyas well as to be
controlled and monitored with either a text or graphical user interface
if so desired. This enables us to either stick the box in a plane and
forget about it or have a humanup in the plane operating the device
and doing rudimentary data verification and analysis in real time.

After evaluating a few options, wedecided to go with a system based
on FSMLabs'RTLinux (http://www.fsmlabs.com). Wefigured that this
would enable us to guarantee the hard real-time performance which is
essential for the system as well as let us build upon a pretty much
normal Linux system for anything which does not have to be real-time,

without worrying about oompromise of the machine's essential

data-gathering function. I also thought that the idea behind RTLinux

was pretty clever, which was clearly a feather in its cap.

The software architecture of the system is based around the RTLinux

kernel/userspace separation approach, where the operations that need

to be run in real-time are contained within a kernel module which,

when inserted, takes over the operation of the machine, only letting

the Linux kernel proper run as an idle process. You then can use

either FIFOs or shared memory to connect this real-time portion of the

system to parts which do not have to run in real-time, such as the

user interface and the part which actually writes the data to a

storage device. We chose to use FIFOs because of the nature of the

device as a sort of data streamer, as well as their relative ease of

implementation.



Installing RTLinux on the disk-on-chip with all of the hardware
support and software which weneededturned out to be a relatively
painless process. The disk-on-chip gave us 30MBof storage, which is
really quite a lot of space to put a system on. Wedownloadedthe
disk-on-chip (DOC)driw_rs from the manufacturer's website
(http://www.m-sys.com), which provide everything you need to boot a
minimal Linux system from the DOC. Westarted with a 2.2.19 kernel
and a redhat 6.1 system on a hard drive connected to a standard IDE
interface. The DOCwas shipped with a DOSsystem on it, but was
configured as the second BIOSdrive, which enabled us to boot Linux
from a hard drive (which is seen as the first drive if attached) and
get to the DOC,which was very convenient. Wethen applied both the
DOCand FSMLabspatches to the kernel, threw in a recent copy of the
pcmcia-cs package (http://pcmcia-cs.sourceforge.net) and compiled. It
was important to keep in mind here that wedidn't need to compile into
the kernel anything to interface with other hardware like the
spectrometer hardware, timecode generator interface, or power control
module. Since the operation of these things is integral and critical
for the basic real-tirae operation of the device, these are dealt with
directly in the real-time module. Only things that are used outside
of this, in our case the PCMCIAdrivers which are used for the
user-space writing out cf the data, need support compiled into the
kernel in the usual way.

Wethen used the DOCstandard utilities (only in DOS.now where was
that old Win95 boot disk again?) to low-level format the disk and make
the BIOSthink that it's the first drive. Wethen used the usual
linux fdisk and mke2fs to get the DOCready for a Linux system.
Within the DOCdrivers provided by the manufacturer, there is a file
list and a copy script for a barebonesL_nux system based around a
standard redhat-6.2 install, with somestandard utilities, shared
libraries, and device entries. Wetook out someof the shared
libraries that we knewthat we wouldn't need, took out manyof the
device entries, and replaced a lot of the programs in the list with
links to busybox (http://busybox.net). Wealso added the scripts and
modules required by RTLinux. This gave us a fairly minimal but very
functional system, leaving as muchroom as possible for any data
analysis programs that we might want to install in the future. Using
the custom LILO included with the DOCsoftware got us booting off of
the DOCwith minor difficulty, as we endedup needing to modify the
lilo.conf file to specify the BIOSdisk numbermanually, as in -

disk=/dev/msys/fla
bios=0xS0

Wealso could not acknowledgethe possible existence of an IDE hard
drive when installing LILO on the DOC,something which I do not fully
understand but have learned, over time, to accept.

Fromhere we began to port the drivers for the spectrometer hardware
(written for MSVisual C) over to kernel code. I thought that this
was going to be very painful, but it turned out to be not so bad. The
most significant difficulty in doing this stemmedfrom the fact that
the original drivers were written by Germanprogrammers, and most of
the variable namesand commentsin the original software tended to
confuse things for us. Wereferred to these difficulties as "The
GermanProblem". Otherwise, we just had to isolate what needed



to happen in real time:

- The spectrometer needs to start sampling at precise intervals from
the last start-of-sample

- The spectrometer needs to sample for a precise duration

- Data coming in over the serial port asynchronously also needs to be handled

- Data coming in from everywhere needs to have an accurate timestamp

We were constantly tempted to to include more functionality in the

real-time part of the system, but we always came back to just

implementing these very basic goals in the real-time part, then adding

anything else that is not real-time critical in userspace. I can't

emphasize enough that it is important to define your real-time goals

precisely, and stick to them. Doing this at 'the beginning would have

saved us a good amount of time.

To accomplish goal #i, we relied on the periodic scheduling function

of RTLinux (see the manpage for pthread make_periodic np) . We

created a pthread to do the sampling from the spectrometer. This

thread is woken up any time there is a state change in the

spectrometer (from stopped to sampling, from sampling to reset,

etc.). Depending on the state, the thread either immediately suspends

itself (if stopped), or runs one spectral sampling cycle and

then suspends itself. If the software is in the sampling state, it

continues to wake the thread at precise intervals. It appears that

there is only about 20 ms or so overhead on the system, so we can

sample almost as often as our spectral integration time allows.

Goal #2 is accomplished by taking advantage of the spectrometer

interface electronics internal timers. The hardware was intended to

sample at intervals of its own internal timer, so we stayed with this

design. Basically, our software sets the integration time for each

spectrometer, tells each to start, and then monitors them for

completion. Because the specs time their sampling using their own

timers, even if we read some spectrometer data a little late, it is

guaranteed to represent the correct integration time. This is

important when there is data coming in asynchronously over a serial

port.

Goal #3 is accomplished by using the rt-com real-time linux serial

port drivers (http://rt-com.sourceforge.net). The interface to rt-com

is based around doing reads and writes to the serial ports, but what

we wanted to do is get serial data in as soon as it appears at the

port. So we modified the internal interrupt service request routines

in the rt-com package to call a function every time data comes in

through the serial port (in the rt com irq_put(...) function). There

is a potential problem here with serial data coming in while we should

be starting a sample, or reading in the data for one. This problem is

handled by disabling interrupts when the spectrometer sampling thread

begins the spectrometer turn-on process. It is possible that this

could be delayed slightly by the rt-com interrupt service routine, but

this isn't really a problem if timestamping is done accurately. It is

also possible that some serial data can come in while interrupts are



disabled. This continues to be a problem, but have tried to alleviate this
by minimizing the amountof code that is run with interrupts disabled.
Notice that the integration time of the samples is not affected by the
asynchronous serial data, due to their reliance on the internal
spectrometer interface timers.

Goal #4 is achieved merely by taking advantage of the
nanosecond-resolution timing hardware, which can run alone or be
connected to an external IRIG-B timecode generator (coming from the
aerial platform). Although rtlinux appears to provide a satisfactory
timer in itself, the IRIG-B timecode will let us synchronize our
spectrometer data to the data coming in over the serial port (which is
time-labeled by the sameIRIG-B timecode generator, which we can
compareto our timestamp). The IRIG-B will also give us a time
context in relation to everything else on the plane, and solve the

timing problems which there would be if, for example, the SSFR needs

to reboot in-flight. The timing module has a very simple interface, a

nanosecond read latches the time, and the software just has to read in

nine bytes worth of BCD (Binary Coded Decimal) data. If the IRIG-B is

not available for some reason, the software timestamps using a simple

call to RTLinux's gethrtime().

The RTLinux driver software communicates to its userspace counterpart

through four real-time FIFO interfaces. It streams spectral and

serial data out through two of the FIFOs, accepts control commands

through another, and reports state and non-data information through

the fourth. This achieves a pretty good separation of the different

data that needs to go back and forth, and allows data and control

information to come in at different rates and still be handled by the

user program. The basic user program simply waits on a select()

between the two data and control response fifos, as well as stdin.

This provides a rudimentary control interface for the SSFR from a

console. Besides the interface, the basic userspace program serves to

match up temporally the data which comes over the serial interface

with spectral data, as well as to act as a 'data distributor' to

multiple output destinations.

On boot, the system runs an init script which runs the rtlinux start

scripts, inserts the kernel module for the spectrometer, and runs the

userspace program in autonomous mode, with some default parameters for

the integration time and the like coming from the script. If there is

an actual real person attending the SSFR and they want to use the gui,

they either start up linux in a different runlevel, or just abort out

of the userspace program. The user then runs a script to get the GUI

version going. We built the GUI with qt, which we currently run with

the regular qt libraries on top of the KDrive tiny X server

(http://www.pps.jussieu.fr/-jch/software/kdrive.html), which is part

of the XFree86 project. KDrive is fun because it uses no

configuration files, so if you want to do something like use a

different mouse you have to edit the source and recompile. Right now,

we run KDrive and the excellent Blackbox window manager

(http://blackbox.alug.org) in about 800k, which isn't very bad at all,

considering that we have a substantial amount of memory for an

embedded system (16M). At some point soon we're going to try out

Qt/Embedded with the system, but using an actual X server gives us the

flexibility to run other non-qt programs concurrently with the SSFR

software while it is in use. We also used BBKeys



(http://movingparts.the[inuxcommunity.org/bbkeys.html) to allow us to
use the system better with no mouseinstalled.

Oneconcern in building the GUIversion of the software was that X
would die and it would kill the process that writes the data to disk.
Wewanted to avoid this, so wemadesure to separate the cor_ from the
interface at the process level. Wedid this also to enforce
consistent interaction with the SSFRin its command-passingand
data-receiving functions, so wewould not find later that there is
something like a subtle timing difference in data obtained when
running the gui or not running the GUI. So whenthe user program is
started in gui mode, it fork()s and exec()s a qt application,
communicating with it via plain old UNIXpipes. Thesepipes take the
place of the stdin and stdout functions in the rudimentary interface,
and one also becomesanother output destination (in addition to the
disk writer). Now, if the GUI dies for somereason, the core user
program won't quit out on us. It also allows us to lower the process
priority of the GUI to help insure that everything gets written out to
disk properly, if need be (although in practice, this hasn't been a
problem). In the future, we are also probably going to have the data
be routed out a serial port (in addition to recording and graphing),
as someaerial platforms allow instruments to broadcast data to the
ground for live analysis. It would be very conceivable that a future
system could use the current plotting portions of the GUI to monitor
data being broadcast from the plane in real time.

Whenwriting the interface, it wasvery helpful to think of the
userspace program as the controller for a little robot which resides
in the RT kernel code. That robot can be in a series of states, and
the userspace program's job is to tell it to change into another
state, or it can change states on its own. So wehave a controller
issuing orders over a control FIFO, and the robot gives us updates as
to what it's up to over a response FIFO. Any time we tried to assume
that the SSFRwas going to do things synchronously with what we were
telling it to do (for instance, assuming that it was no longer in a
sampling state immediately after it returns its last spectral data
package in a series), we ran into trouble. So, rememberto listen to
your little robot.

The graphical interface itself was started in the qt2designer program
from Trolltech, which was easy to work with and madethe task of
laying out a window with a lot of buttons very easy. The functions of
the interface boiled downto just being able to changesomecontrol
parameters and look at the pretty data coming in. The GUIwas
constructed on another machine, using a 'fake SSFR'that would connect
to the control program over somenamedpipes and simulate the
performance of the SSFRhardware. This sped up development
considerably, as a largeish qt program can take quite a long time to
compile on a slower, lower-memorysystem such as the SSFR.

Wewere able to use David Watt's rtp real-time plotting library
featured in a Linux Journal
(http://www.linuxjournal.com/article.php?sid=3921) as a basis for our
data display. The outstanding feature of rtp is that it won't try and
finish plotting a current dataset if another set comesin before it
finishes, so it can't get backed up. Becauseof the potential for
plotting a lot of data at once, as well as the resource requirements



of the rest of the system, this was a key consideration for its use.
Wemodified the functions of rtp to take spectral data or temperature

data directly over a function call (not over stdin), then plot over a

[ixed area, either over the 256 bins of our spectrometer instruments,

or a time-tracking temperature plot with a moving time window. We

then hooked this up using qt's QSocketNotifiers, so that data coming

in over the pipes would immediately get sent out to whatever

dataplotters were activated, without resorting to anything silly like

polling.

At the time of this writing, we are putting the finishing touches on

the system. It will then be tested many, many, many times on the

ground to make sure that it functions correctly and that the data it

produces is accurate. But the Big Test comes this summer, when

the new software makes its debut during the CRYSTAL-FACE (Cirrus

Regional Study of Tropical Anvils and Cirrus Layers Florida Area

Cirrus Experiment) Mission. This will be a very exciting time both

for me personally and also for Embedded Linux. I'm hoping that this

project will help to raise awareness of the advantages of using Linux

for this kind of project: at NASA and everywhere.


